
www.manaraa.com

University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

5-1-2013

Hopscotch: Robust Multi-agent Search
Edward C. Miles

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Miles, Edward C.. "Hopscotch: Robust Multi-agent Search." (2013). https://digitalrepository.unm.edu/cs_etds/61

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/61?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

www.manaraa.com

Edward C. Miles

Computer Science

Melanie Moses

Lydia Tapia

Rafael Fierro

www.manaraa.com

Hopscotch:
Robust Multi-agent Search

by

Edward C. Miles

B.E.E., Georgia Institute of Technology, 1990

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Computer Science

The University of New Mexico

Albuquerque, New Mexico

May 2013

www.manaraa.com

c�2012, Edward C. Miles

iii

www.manaraa.com

Acknowledgments

Thanks to:

My professors and fellow students at UNM, who contributed to the vat of ideas
that eventually distilled into this thesis.

The Scalenet lab group, who provided a welcoming forum for the exchange of
ideas and inspiration.

My committee, and especially my advisor, Melanie Moses. She kept me focused
and motivated and provided notebooks full of advice, most of which I followed.

iv

www.manaraa.com

Hopscotch:
Robust Multi-agent Search

by

Edward C. Miles

B.E.E., Georgia Institute of Technology, 1990

M.S., Computer Science, University of New Mexico, 2013

Abstract

The task of searching a space is critical to a wide range of diverse applications such

as land mine clearing and planetary exploration. Because applications frequently

require searching remote or hazardous locations, and because the task is easily divis-

ible, it is natural to consider the use of multi-robot teams to accomplish the search

task. An important topic of research in this area is the division of the task among

robot agents. Interrelated with subtask assignment is failure handling, in the sense

that, when an agent fails, its part of the task must then be performed by other

agents.

This thesis describes Hopscotch, a multi-agent search strategy that divides the

search area into a grid of lots. Each agent is assigned responsibility to search one lot

at a time, and upon completing the search of that lot the agent is assigned a new lot.

Assignment occurs in real time using a simple contract net. Because lots that have

been previously searched are skipped, the order of search from the point of view of

v

www.manaraa.com

a particular agent is reminiscent of the progression of steps in the playground game

of Hopscotch.

Decomposition of the search area is a common approach to multi-agent search,

and auction-based contract net strategies have appeared in recent literature as a

method of task allocation in multi-agent systems. The Hopscotch strategy combines

the two, with a strong focus on robust tolerance of agent failures. Contract nets

typically divide all known tasks among available resources. In contrast, Hopscotch

limits each agent to one assigned lot at a time, so that failure of an agent compels

re-allocation of only one lot search task. Furthermore, the contract net is imple-

mented in an unconventional manner that empowers each agent with responsibility

for contract management. This novel combination of real-time assignment and de-

centralized management allows Hopscotch to resiliently cope with agent failures.

The Hopscotch strategy was modeled and compared to other multi-agent strate-

gies that tackle the search task in a variety of ways. Simulation results show that

Hopscotch is failure-tolerant and very effective in comparison to the other approaches

in terms of both search time and search efficiency. Although the search task modeled

here is a basic one, results from simulations show the promise of using this strategy

for more complicated scenarios, and with actual robot agents.

vi

www.manaraa.com

Contents

List of Figures ix

1 Introduction 1

1.1 Background . 1

1.1.1 General Considerations . 1

1.1.2 Problem Description . 3

1.1.3 Approach . 5

1.1.4 Related Work . 5

1.2 Outline . 13

2 Methods 14

2.1 Model Description . 14

2.2 Search Strategies . 15

2.2.1 Rulesets . 15

2.2.2 Description . 16

vii

www.manaraa.com

Contents

2.3 Failure Rates . 25

2.4 Metrics . 27

3 Results 29

3.1 Time and Redundancy . 29

3.2 Number of Agents . 33

3.3 Completeness . 35

3.4 Hopscotch Lot Size and Failure Rate 36

3.5 Effect on Hopscotch of Limited Communication Range 37

4 Conclusions 39

4.1 Summary . 39

4.2 Future Work . 40

References 44

viii

www.manaraa.com

List of Figures

2.1 Depiction of the Simulation Space During a Typical Run 16

2.2 Flow of an Agent Update During a Time Step 17

2.3 Hopscotch Bidding Process . 23

2.4 Typical Failure Rate Over the Life of a Machine 26

3.1 Space Searched Over Time Using Different Search Strategies 30

3.2 Comparison of Locations Redundantly Searched 33

3.3 Space Searched Over Time with a Varying Number of Agents 34

3.4 Comparison of Time to Complete Portions of the Search Task 35

3.5 Hopscotch Search Time as a Function of Lot Size and Failure Rate . 36

3.6 Communication Range and Hopscotch Lot Size 38

4.1 Hopscotch Search of a Very Large Space 42

ix

www.manaraa.com

Chapter 1

Introduction

1.1 Background

1.1.1 General Considerations

The challenge of searching a space thoroughly and efficiently is applicable to a wide

variety of tasks such as land mine detection [1], resource mapping [2], and planetary

surface exploration [3]. Rather than using a small number of very reliable robot

agents to explore a space, as with the rovers recently deployed to Mars, there are

numerous advantages to using a large number (a “swarm”) of simple robots [4]. This

is analogous to biological swarms such as those of ants or bees, where numerous

foragers search an area for resources [5].

The goal of the search process depends on the application. The goal may be to find

a resource that can be exploited, to determine a safe path, or to map the positions of

obstacles. In cases like these, the search can be successful without being exhaustive,

since the search can end when the goal is attained. For applications such as land

mine clearing, it may be desirable or even required that the search completely cover

1

www.manaraa.com

Chapter 1. Introduction

the entire search space [6]. This goal of complete coverage is common for analogous

problems appearing in the literature such as cleaning, painting, and mowing [7, 8].

Many multi-agent strategies have been proposed for this type of task [9], often

without consideration of agent reliability. Strategies that rely on each agent per-

forming a specific subtask assigned a priori (i.e., searching a particular area) are

especially vulnerable to agent failures [10]. Strategies that incorporate redundancy

in agent tasking are less vulnerable to failures but suffer the inefficiencies inherent

with redundancy. Ideally, a strategy should work quickly, be fault tolerant, and

completely cover the search area.

In order to quickly search large areas, it is generally desirable to have as many

agents participating in the search as possible. However, economics and logistics place

limits that result in a trade-off between systems comprised of a few highly capable

search agents and systems with more agents that are less capable (where less capable

implies smaller, cheaper, more transportable, and perhaps less reliable) [11]. In the

latter case, the agents may cooperate, forming a swarm. There are numerous exam-

ples from biology of species successfully using swarms of simple agents to accomplish

complex tasks [12]. The foraging strategies of harvester ant colonies have been stud-

ied extensively, and even these simple agents, taken collectively, exhibit complex and

efficient strategies for resource exploitation [13].

With the goal of realizing these types of benefits, there has been quite a bit of

recent work devoted to developing man-made swarm search systems [14, 4]. These

systems are usually comprised of a number of small, simple robot agents. A signifi-

cant advantage of this approach is that, should an agent fail, remaining operational

agents can compensate for the loss. One of the main challenges in designing a swarm

search strategey is subtask allocation [15].

Because use of robots for search is well suited for remote or hazardous locations,

2

www.manaraa.com

Chapter 1. Introduction

there will be many search tasks where the robot swarm must operate autonomously.

In this situation, the only influences on the behavior of an individual agent are from

the environment, meaning the space and other agents. Furthermore, it means that

an agent that fails cannot be repaired. While there has been work suggesting the

feasibility of self-repair within a robot swarm [16, 17], this type of functionality is

likely to require capabilities beyond what is considered here for simple agents.

1.1.2 Problem Description

This thesis describes simulation and testing of different strategies for searching a

space using multiple unreliable agents. Although the experimental setup is not in-

tended to precisely represent a particular real-world application, efforts were made

to keep the experiments realistic enough that the results could be applied to real

applications. Examples of tasks for multiple agents searching a large, obstacle-free

space include land mine detection, surveillance and mapping using unmanned aerial

vehicles, and sowing seed on a large field.

This work specifically considers the problem of searching a known, homogenous,

obstacle-free area using a swarm of agents that fail at a fixed rate. While the bounds

of the search area are known a priori, not all strategies considered herein make use of

that knowledge. Furthermore, it is assumed that the agents have accurate location

information, though it not all strategies require it. When required by the strategy,

it is assumed that the agents can communicate with each other (refer to section

2.2.2 for a detailed description of each strategy). The areas used for the simulation

experiments described herein are square, and agents start each simulation run at a

centrally located nest. The goal is to completely search (or, equivalently, clean) the

entire space, or some predetermined fraction of the space.

More formally, the search task is defined as follows. The search space is a

3

www.manaraa.com

Chapter 1. Introduction

bounded, fully connected planar region. The space is divided into a grid of equal-

sized axis-aligned square locations. One location is designated the nest, and serves

as the source for search agents entering the space.

Time is discretized into steps. At each time step, each agent is given the op-

portunity to either change direction or move discretely in the current direction to a

new location. Agents may not move to a location that is already occupied. Each

agent has sensors that allow it to search the location that it occupies, and the size

of a location is considered to be the area an agent can search in a single time step.

A location is considered to have been searched during the time step that an agent

moves to that location. Each agent is also assumed to have the ability to detect

obstacles such as boundaries and other agents that occupy neighboring locations.

Furthermore, each agent has a chance of failing each time step. Failed agents do not

participate in the task in any way and do not recover.

Each agent operates based on a set of pre-programmed rules, and is assumed

to have a small, finite memory, capable of holding internal state information. This

may be used to retain information such as direction, destination, or the last several

locations occupied. Furthermore, agents may communicate with one another. The

information exchanged between agents depends on the requirements of the search

strategy.

Because it is necessary to track what has been searched, both for analysis and

as data that affects agent decisions, agent movement is restricted to the four cardi-

nal directions. Since an agent’s sensor is considered to operate on an area that is

essentially square and the size of a location, allowing movement in a diagonal direc-

tion would result in incomplete or imperfect coverage of individual locations. Agents

are considered to have accurate knowledge of their current location and orientation

(heading), although not all strategies considered use this information. The assump-

tion that robots have accurate location information is a reasonable one and a number

4

www.manaraa.com

Chapter 1. Introduction

of methods [18, 19] for location determination have been successfully implemented.

1.1.3 Approach

This thesis describes Hopscotch, a self-organized, incremental divide-and-conquer

strategy using a swarm of homogenous search agents. Each agent is responsible for

a small fraction of the search task at any given time, with assignments handled by

a contract net. The contract net is designed so that only one agent is assigned to

a given area (a lot) in an attempt to minimize redundant searching, which leads to

faster coverage of the search space. If an agent fails to meet its obligation to search

a lot, the lot becomes available to other agents. Lots that have not been searched

are assigned to available agents until all lots have been searched or no agents are

available, ensuring that as long as at least one agent remains available, the search

will complete. Robustness comes from both managing the scope of work that does not

complete should an agent fail, and ensuring that the incomplete work is reassigned.

The Hopscotch strategy is modeled and compared to strategies that rely on redun-

dancy to compensate for agent failures, a strategy that uses individual memory, and

strategies that rely on one-way communication using markings such as pheromones.

All of the strategies are described in detail in section 2.2.2.

1.1.4 Related Work

Strategies and Multi-agent Considerations

A common application of the search problem is land mine and unexploded ordnance

detection in a field, and there is a wealth of published research on this topic. The

problem is described by Acar et al. in [20]. While Acar et al. do not consider multiple

agents, they do argue the advantages of complete strategies and demonstrate their

5

www.manaraa.com

Chapter 1. Introduction

advantage over random strategies. Their work to determine an exact cellular decom-

position of an unknown search space has applicability to task division in multi-agent

strategies. They also address the imperfect detector scenario, where sensing an area

that has a search target does not mean the search target is found. Imperfect detec-

tors are especially vexing when complete coverage is desired, since it can never be

guaranteed that all search targets (the land mines, in this case) have been found.

There are a number of examples in the literature that illustrate the value of

communication when multiple agents are performing a task. Balch and Arkin in [21]

explored the impact of communication ability on the capabilities and effectiveness of a

multi-agent robotic system. Their research demonstrates that even simple inter-agent

communication capability can greatly benefit speed and efficiency. Their experiments

included both simulation and real robots, and one of the tasks they studied they

refer to as grazing, which is a version of the search problem described herein. They

consider three levels of communication: no communication, state communication

only, and goal communication. Their results show that explicit communication has

a negligible effect on the speed of accomplishing the graze task, but they do assume

implicit communication, where agents can tell which areas have already been grazed.

In [22], Gage discusses the benefits of randomized search, as compared to coor-

dinated search, for a multiple agent system tasked with coverage. While he does

not dispute the benefits of coordinated search strategies, he argues that they require

command and control infrastructure, thus increasing the complexity (along with the

size, expense, energy requirements, and potential for individual failure) of the sys-

tem. Also, real-world constraints such as navigation inaccuracies can cause problems

for a coordinated strategy.

Gage points out that the application is an important factor in determining how

effective a strategy is. For example, the goal of maximizing the number of search

targets found per amount of search effort may require a different approach than the

6

www.manaraa.com

Chapter 1. Introduction

goal of minimizing the number of search targets missed per sweep of an area. He

concludes that a random search strategy is not always inferior, and the best search

strategy depends on the application parameters.

Biologically Inspired Communication

Koenig et al. in [23] and [24] studied a coordinated multi-robot search strategy that

uses very simple ant robots whose only means of communication is leaving markings

on terrain that has been searched. The very simple ant robots employing this strategy

do not need memory, knowledge of the terrain, or path planning capability. They do

not even need to know their location, and they are capable of dealing with situations

where the robots are moved without knowing it, e.g., from a collision. The strategy

robustly handles robot failures and destruction of communication markings.

Marking as a means of communication between agents has received extensive at-

tention. Wagner and Bruckstein had previously proposed a similar approach in [25],

specifying the application to actually be cleaning a dirty floor, and using the amount

of dirt on the floor as the means of inter-robot communication. Oshervich et al. in [26]

describe a strategy they refer to as “Mark-Ant-Walk”, which uses pheromone mark-

ings as the means of communication when coordinating coverage of search spaces.

In [27], Ranjbar-Sahraei et al. describe an approach to multi-robot coverage using

pheromone-based communication. Here, coverage means a distribution of robots over

an area. In their simulations, robots move to areas based on pheromone encounters,

resulting in a fairly even spread of agents once a steady-state has been reached.

Using a novel and biologically inspired approach, Hsieh et al. [28] developed

a decentralized algorithm for multi-robot distribution among sites inspired by ant

colony nest site selection. Their approach uses a quorum sensing mechanism that

does not require explicit wireless communication between agents. The agents are

7

www.manaraa.com

Chapter 1. Introduction

assumed to have the ability to determine whether a site is above or below quorum

based on encounter rates with other agents. They show mathematically and through

simulation that their algorithm converges to a desired distribution.

Pre-planned Paths

In cases where the travel time to an area to be searched is significant compared to

the time to search the area, it becomes important to develop efficient search paths.

Hazon and Kaminka in [29] examine this by defining a graph G(V,E) where V is the

set of nodes corresponding to the cells (analogous to lots) to be searched, and E is

the paths connecting the cells, weighted by travel time. They then find the minimum

spanning tree for G, and use this to analyze both backtracking and non-backtracking

search strategies that are both complete (guaranteed to search all lots) and robust

(completes the search as long as at least one robot is active). This approach takes

advantage of a priori knowledge of the search space in order to build the graph.

They show that their backtracking strategy has a better time guarantee, but is not

necessarily optimal in all applications.

Roadmap-based path planning is extended by Bayazit et al. in [30] for use by

groups to improve performance in group behaviors such as exploring. Flocking be-

havior is typically modeled using individuals with simple rules that determine how

members move in relation one other. By integrating roadmaps, rules may be mod-

ified for more optimal behavior based on location on the roadmap. The roadmaps

themselves may also be adapted by changing roadmap-embedded rules as new infor-

mation is gathered. This does require that all agents have the ability to read from

and modify the roadmap. Simulation results are presented that show good coverage

performance in an environment occupied by obstacles.

8

www.manaraa.com

Chapter 1. Introduction

Explicit Multi-agent Coordination

Burgard et. al. propose a scheme in [31] that sends individual agents to different

“target points” so that agents are simultaneously exploring different regions in the

environment, and weighting the value of the the target points based on the amount

of proximate unexplored area. The algorithm they propose explicitly coordinates the

agents. Their experiments focus on complicated environments where it is necessary

for the robots to create a map of the area. In their experiments, uncoordinated

agents using a greedy strategy frequently duplicated each other’s work, and were

significantly outperformed by agents using the proposed coordinated strategy.

Alur et al. [32] developed and tested a set of tools to coordinate and control robots

deployed in an unknown environment. Their framework divides overall control into

a hierarchy of high-level (long term, planned) and low-level (immediate) tasks, and

provides a method of transitioning from task to task. Because of the uncertainty

inherent in unknown and unstructured environments, robots operating in such en-

vironments need a variety of behaviors to deal with different conditions. They also

need a control framework to choose behaviors and switch between them in order

to accomplish the top-level objective. They implement their framework in a small

group of robotic agents and experimentally show good performance in basic tasks

such as mapping and leader following. They also present a method of localization

using landmark matching from images obtained using an on-board camera.

Bezzo and Fierro in [33] give algorithms for distributing a robot swarm so that

wireless network routers on the robots maintain connections between explorers and a

base station as the explorers move about the environment. They present simulation

results that demonstrate how connections are maintained when members fail.

Distribution of a group of mobile sensors for optimal sensor coverage is addressed

by Cortés in [34]. The goal of this distribution is to achieve sensor coverage, where

9

www.manaraa.com

Chapter 1. Introduction

in this case coverage means the the sensors are distributed such that overall sensing

ability is optimized. Each individual periodically communicates with other agents

and computes its own Voronoi region, adjusting its location to the center of its

Voronoi region for best coverage. This technique requires reliable communication

between agents and accurate knowledge of agent locations.

Bullo et al. [35] expand on the sensor coverage ideas in [34], relaxing communi-

cation requirements to allow operation with only gossip communication, which they

describe as asynchronous, pairwise, and possibly unreliable. This leads to dominance

regions, which are location-independent and recomputed every time an agent com-

municates with another agent. They show theoretically and with simulation that

dominance regions from their gossip coverage algorithm converge asymptotically to

a centroidal Voronoi partition. They include a discussion of how the gossip coverage

algorithm could be implemented with a robotic sensor network.

A multi-robot task allocation approach requiring extensive communication capa-

bility and central control is given by Howard et al. in [36]. They describe a relatively

large (approximately 80 robots) heterogenous swarm designed for building interior

exploration. They use a mix of two classes of robots: a small number of highly

capable robots, complimented by a large number of simple robots. The robots com-

municate among themselves and with a remote operator console over 802.11b WiFi,

which all robots are equipped to use. Control and data aggregation are handled at

the remote operator console.

Using a similar centralized control approach, Berman et al. [37] present a method

of allocating tasks in robot swarms that does not require communication among the

robots themselves. Their method does, however, require a central controller that is

capable of monitoring tasks and broadcasting task information, but does not dictate

specific actions. They claim that market-based techniques scale poorly to large-scale

systems, with one of the reasons being bandwidth limitations.

10

www.manaraa.com

Chapter 1. Introduction

Market-based Task Assignment

Smith [38] describes the contract net protocol, a high-level protocol for resource al-

location in a distributed problem solver. The contract net is made up of a collection

of nodes, with a node serving in the role of manager or contractor. The manager

identifies, monitors, and processes the results of tasks executed by the contractor.

The contractor executes tasks based on established contracts. A node may be simul-

taneously performing the role of manager and contractor for different contracts.

In a contract net, nodes capable of performing a task communicate bids to the

contracting manager. Managers evaluate the bids, and a contract for a task is es-

tablished by communication between the manager and one (or more) of the bidding

nodes, thus allocating the task. The paper describes in detail a protocol for exchang-

ing information between managers and contractors. It also provides insights on the

process of evaluating bids and choosing contractors.

Choi et al. in [39] use decentralized auction schemes for allocating tasks to robot

agents. An agent submits bids for tasks it can accomplish to other agents it is in

communication with. The agents then use a consensus strategy where each agent

computes a winning bids list and compares it to the lists of other agents, iterating

until a winning bids list is agreed upon, resulting in agreed-to assignments for each

agent. They extend this strategy to also handle task bundles, where each agent bids

on a set of tasks.

Sariel and Balch use auctions to assign exploration targets to robot agents in

[40]. They consider complicated environments, using auctions to redistribute targets

as awareness of the environment improves. They use precaution routines to handle

failures and ensure that the exploration task completes.

11

www.manaraa.com

Chapter 1. Introduction

Agent Limitations

The case for using multiple less-reliable robot agents is presented by Stancliff et al.

in [41]. They define a simple mission, and show that a team of four robots is more

likely to successfully complete the mission than a team of two robots even when the

robots in the four robot team are much less reliable. In [10] they extend this work

by showing that failing to consider robot failures when planning missions can result

in sub-optimal plans with substantially worse performance compared to plans that

assume failures will occur.

Rubenstein et al. in [42] present a design for very inexpensive robots they call

Kilobots intended to be operated in swarms numbering on the order of a thousand.

These small robots can turn and move forward, but do not have any type of odom-

etry for self-location. The robots can communicate using infrared light, although

the range and bandwidth are limited compared to communication systems on more

capable robots described in the literature. They also feature an 8 Mhz processor and

32K of memory. The authors demonstrate some basic collective behaviors, but more

importantly, these small robots hint at the types of limitations that are likely to be

inherent in robots designed to be part of a large swarm.

Extension of Previous Work

This work considers a problem established in some of the earlier work reviewed

above, that of cleaning or covering an area. With a nod to biological inspiration and

applications such as land mine detection, the same basic problem is herein referred

to as search. The literature makes it clear that multi-agent strategies are well suited

to easily divisible problems such as this, and acknowledges the challenge of task

division and assignment. Cellular decomposition is a common approach to dividing

the space among agents. For task assignment, market-based strategies akin to the

12

www.manaraa.com

Chapter 1. Introduction

contract net presented by Smith in 1980 have become popular in recent literature.

The Hopscotch strategy presented in this thesis uses cellular decomposition to divide

the search space, and a simple contract net to assign search responsibility for pieces of

the space to agents. Hopscotch also modifies these ideas in two ways, with the intent

of robust tolerance to agent failures. First, in contrast to traditional contract nets,

each agent only contracts for one task at a time. Second, all agents are empowered

with contract management responsibility. Taken together, these two modifications

minimize the impact of agent failure.

1.2 Outline

The remaining chapters are organized as follows. Chapter 2 describes the simulation

used to generate the data described herein and metrics for evaluating the results.

Chapter 3 gives the results and analysis from a number of different runs of the

simulation. Chapter 4 gives conclusions and presents ideas for further research.

13

www.manaraa.com

Chapter 2

Methods

2.1 Model Description

The model is implemented in a program called SwarmExp, which was written by the

author specifically to perform the experiments described in this thesis. SwarmExp is

written in Objective-C, which is an object-oriented superset of the C programming

language [43]. In SwarmExp, each agent is an instance of an agent object. This

architecture allows each agent to operate exactly the same way, yet maintain its

own independent status information. Agent behavior is governed by a set of rules

(the ruleset) implementing a strategy that is chosen prior to starting the simulation.

Information about the space is updated during the course of the simulation run. The

space is divided into a grid of squares representing locations in the search space, and

the size of each square may be thought of as approximating the sensing area of an

agent. The amount of information about the space that is available to each agent

depends on the ruleset.

A run begins with each agent and the space being initialized with the parameters

for that run. Agents enter the space at a location designated as the nest, and move

14

www.manaraa.com

Chapter 2. Methods

discretely so that an agent occupies only one location at a time. The simulation

proceeds in discrete time steps. What agents do during a time step is dictated by

the ruleset associated with the strategy being simulated. Typically they will move

to one of the four neighboring grid squares (the von Neumann neighborhood with

r = 1) [44] or change direction. Agents may not both turn and move in the same time

step, and an agent may not move to a location that is already occupied. If the agent

does move, the newly occupied location is considered to have been searched. Agents

update in a fixed order each time step, and the first agent to update its location to

a new location l takes precedence over other agents that attempt to move to l.

A depiction of the space during a typical run is shown in figure 2.1.

2.2 Search Strategies

2.2.1 Rulesets

A ruleset implements a search strategy and is a collection of rules that determines

the actions each agent takes during a time step. The ruleset is also specifies how

much information from the space and from other agents the agent uses, determined

by the inputs to the rules.

Specifically, the ruleset defines:

• When an agent changes direction

• How a new direction is determined

• How an agent reacts if the agent finds its destination occupied.

A flow for an agent update showing where rules are implemented is given in figure

2.2.

15

www.manaraa.com

Chapter 2. Methods

Color Key
Location searched once
Location searched twice
Location searched 3 times
Location searched 4 times
Location searched 5 times
Location searched 6 times
Location searched 7 times
Location searched 8 times
Location searched 9 times
Location searched >9 times
Location not searched
Location occupied by an agent

Figure 2.1: Depiction of the simulation space during a typical run. This is the 2000th
time step of a run with using 20 agents, with the nest located at the center. Agents
locations are marked in red. Unexplored locations are tan. Explored locations are
green, ranging from a very dark green if the location has been searched once to a
very bright green if the location has been searched 10 or more times.

2.2.2 Description

The search strategies explored in this work are compared in table 2.1. In the table,

Comm refers to the type of communication allowed between agents. Space Awareness

refers to whether the agent needs to know the extents of the search space, and

Location Awareness refers to the agent accurately knowing its own location in the

search space. Complete refers to whether the search will necessarily complete given

agents remain active.

For the first two strategies, Random Direction Change and Random Chords, each

16

www.manaraa.com

Chapter 2. Methods

updateForTimeStep

(Rule)
Direction change?

Determine next location
candidate

currentDirection ==
None?

(Rule)
Determine New Direction

Next location
candidate
occupied?

(Rule)
Direction change

required?

Move to new location

return

Yes

No

Yes

No

Yes

No

Yes

No

Figure 2.2: Flow of an agent update during a time step. Blue shaded boxes show
where rules are implemented.

17

www.manaraa.com

Chapter 2. Methods

Strategy Comm Space Awareness Location Awareness Complete

Random Direction Change None Not required Not required No

Random Chords None Required Not required No

Greedy Markers Not required Not required No

Greedy Lots Markers Required Required No

Lots With Individual Tracking None Required Required Yes

Hopscotch Contract Info Required Required Yes

Table 2.1: Characteristics of tested search strategies.

agent performs its own independent randomized search. For this reason, it is not

necessary for agents to communicate with each other or maintain accurate location

awareness. The two greedy strategies, Greedy and Greedy Lots, rely on communi-

cation by marking locations that are searched. This marking could be implemented

with visual marks on the space, pheromone, tags, or in some other manner [45]. The

Greedy Lots, Lots With Individual Tracking and Hopscotch strategies divide the

space into lots, and agents therefore need to be aware of the extents of the space

and their own location to determine where lot boundaries are. Hopscotch requires

two-way real time communication between agents.

It is worth pointing out that the table lists just the requirements to execute

the search strategy. In a real-world application, more rigorous requirements may

be necessary. For example, if the application is a search to determine the location

of some set of objectives, agents will need accurate location awareness in order to

report where objectives were found. If the goal of the search is surveillance, it may

be important for agents to have a communication capability for quickly sending

notification if an intruder is found.

Each of these six strategies is described in detail below.

18

www.manaraa.com

Chapter 2. Methods

Random Direction Change

The random direction change strategy specifies that each agent has a fixed chance of

changing direction at every time step. Upon initialization, all agents have a direction

of None, so a new direction is determined at random during the first time step. At

each subsequent time step, the agent determines whether it should change direction

based on a random draw given the fixed chance of changing direction. The agent

then either attempts to move in its current direction or changes direction based on

the outcome of the draw.

An agent may be unable to move in its current direction due to an obstruction

such as a boundary or another agent. If this occurs, the agent changes its current

direction to a random direction.

This strategy does not require communications between agents, knowledge of the

space to be searched, historical tracking, or accurate location awareness.

Random Chords

Inspired by an algorithm described in [46] that uses chord paths to randomly search

a circular area, random chords uses right-angle paths from one side to an adjacent

side. Agents initially go to a location at one of the boundaries of the search space.

A random location on one of the adjacent boundaries is then picked and the agent

travels two right angle segments to reach the new location. Upon arrival, the process

of picking a boundary destination and then traveling to it repeats. This is only

interrupted if the agent is obstructed by another agent. If this occurs, the agent

simply picks a new location on any boundary and travels there, resuming the process.

The Random Chords strategy does not require communication between agents,

but does require a knowledge of the space to be searched in order to determine truly

19

www.manaraa.com

Chapter 2. Methods

random boundary destinations. However, because it results in long non-crossing

paths and involves comparatively little turning, it typically outperforms the Random

Direction Change strategy in search time.

Greedy

The Greedy search strategy attempts to maximize time spent searching locations that

have not been previously searched, locally optimized both spatially and temporally.

The rule assumes that an agent knows whether locations in its local neighborhood

have been searched. Though an agent only needs local knowledge for a particular

decision, agents could be operating anywhere in the space, meaning that search status

for the entire space must be maintained.

If the next location in an agent’s current direction has not been searched, the

agent moves in its current direction in order to reach that location. If the next loca-

tion has already been searched, the agent checks its local neighborhood for locations

that have not been searched. If a location that has not been searched is found, the

agent turns so that its new current direction is toward the location that has not been

searched. If all locations in the local neighborhood have been searched, the agent

moves in a manner similar to the Random Direction Change strategy until it finds a

location that has not been searched, at which time it resumes the greedy behavior.

Implementation of the Greedy strategy requires tracking of which locations in

the space have been searched, and having a subset of that information pertaining

to its local neighborhood available to each agent. This means that the swarm must

have a means of communicating this information. The intent is to simulate this

information being communicated using a marker such as pheromone applied to the

space at locations that have been searched.

20

www.manaraa.com

Chapter 2. Methods

Greedy Lots

The Greedy Lots search strategy uses a decomposition of the space into a grid of

square lots, with each agent using the same lot boundaries. Like the Greedy strategy,

Greedy Lots attempts local optimization but instead of optimizing to locations, entire

lots are considered. As with the Greedy strategy, agents are aware of which locations

have been searched, and additionally, how many times. This is akin to sensing an

accumulation of pheromone or other type of marker. To spread the agents throughout

the space initially when there are no previous searches to guide lot choice, a “shotgun

start” is used where each agent completely searches a lot chosen at random from all

available lots. Once the lot has been searched, the agent evaluates the search status

of the eight neighboring lots. Search status is determined by adding the times each

location in each respective lot has beens searched, with a small random factor added

to simulate sensor noise. The agent uses this value to choose the least searched

neighboring lot, searches it, and then chooses subsequent new lots to search in a

similar manner.

This strategy requires enough knowledge of the space to subdivide it into lots and

a way of communicating search status similar to the Greedy strategy. Though it does

require accurate location to determine lot boundaries, a real-world implementation

of Greedy Lots should be somewhat tolerant of location errors provided the search

markings are applied directly to the floor or ground.

Lots With Individual Tracking

With the space divided into lots, each agent can easily track its own progress and

avoid searching where it has already searched. The use of lots provides a decrease

in individual agent memory requirements proportional to the lot area. For example,

status of a 10×10 lot can be tracked by storing status information with the location

21

www.manaraa.com

Chapter 2. Methods

of one corner (given a convention for lot size and which corner is stored), as opposed

to storing status information for all 100 locations the lot contains.

Lots With Individual Tracking specifies that each agent chooses a lot and searches

it; upon completion of searching the lot, the agent stores in its individual memory

that the lot has been searched. In order to spread out the agents, a “shotgun start”

is used, sending each agent initially to search a randomly selected lot. The agent

then chooses a new lot that it has not searched and proceeds to search the new lot,

continuing in this manner until all lots have been searched. The choice of lots after

the first has a randomness factor but is heavily biased toward lots that are close to

the agent. Because of this bias and the tracking of previously searched lots, the lot

search progression resembles a self-avoiding random walk.

This rule does not require communication between agents, but it does require

enough knowledge of the space to be searched to divide it into lots, and memory

proportional to the size of the space based on lot size as previously described.

Hopscotch

As with the game of Hopscotch found on many playgrounds, the Hopscotch search

strategy involves division of the space into lots, which, from the point of view of

an individual agent, are either searched or skipped based on their search status.

This strategy uses the same lot concept as Greedy Lots and Lots With Individual

Tracking, but divides lot search responsibility using a simple contract net. This type

of market-based approach that has proven effective in dividing work among robot

agents [47].

The bidding process for lot assignment is illustrated in figure 2.3. An agent

acquires responsibility (a contract) to search a lot by using communications with

other agents to broadcast a bid. The bid includes a lot, which is chosen from a

22

www.manaraa.com

Chapter 2. Methods

Contract

(d) Continue Bidding (e) Bid Accepted (f) Execute Contract

(b) Bid on Top Priority Lot(a) Prioritize Lots (c) Bid Rejected

Figure 2.3: The Hopscotch bidding process. (a) The bidding agent assembles a
prioritized list of lots to search. (b) The bidding agent broadcasts a bid for its
highest priority lot. (c) If another agent is aware that the lot has been searched or
is under contract, it rejects the bid. (d) The bidding agent continues to bid on lots
in priority order. (e) When the bidding agent does not receive a rejection response,
the bid is considered accepted. (f) The bidding agent is now contracted to search
the lot.

prioritized list created by the bidding agent. Lot priority is based on proximity to

the bidding agent and proximity to the nest. The bid also includes a completion

time estimate, which indicates when the agent would expect to finish the search of

that lot.

Success of the bid is based on whether the lot associated with the bid has been

previously searched or is currently under contract to any agent. If either of these

conditions are true, the bid fails and the bidding agent submits a new bid for the

next lot on its prioritized list. One important feature of this process is that the

bid can be rejected by any agent with knowledge that the bid lot either has already

been searched or is under contract. This decentralizes the contracting process and

makes it tolerant of agent failures since no single agent is responsible for determining

23

www.manaraa.com

Chapter 2. Methods

whether a bid succeeds.

If the bid is not rejected, the agent is assumed to have contracted to search the lot.

Once the agent has the contract, it proceeds to the contracted lot and commences

a search of the lot. When the lot has been searched, the agent broadcasts a search

complete so that other agents will know the lot has been searched. The agent then

compiles a new prioritized list of lots and starts the bidding process once again.

The fact that agents only contract for one lot at a time is another key component

of the robustness of Hopscotch, because an agent that fails only delays completion

of that one lot. Once the contract for that lot expires, the next new bid for it will

be successful and a different agent will search the lot.

Tracking of contracts and completed lots is the responsibility of all agents col-

lectively. Contracts are added to a list of in-work contracts once a bid is accepted.

When a search contract is reported complete, the contract is removed from the list

of in-work contracts and the lot is added to a list of searched lots. Presence of a lot

in either list results in rejection of any new bid for that lot. Any time a new bid is

received, the list of in-work contracts is reviewed for expired contracts prior to eval-

uation of the new bid. A contract is expired when it remains on the in-work contract

list past the estimated completion time, meaning that a search complete message

associated with the contract was not received by the time the contracting agent was

supposed to have completed the search. When this happens the contracting agent is

assumed to have failed. The contract is removed from the in-work contracts list and

thus the associated lot is made available for subsequent bids from any agent. This

approach gives the strategy robustness against agent failures.

One of the advantages of the Hopscotch strategy is the simplicity of the com-

munications required. While two-way communication between agents is required,

communication is infrequent, can be asynchronous, and the messages exchanged

24

www.manaraa.com

Chapter 2. Methods

are short and simple. Gerkey and Matarić [48] point out numerous advantages to

using simple asynchronous communications in their implementation of an auction-

based multi-robot task management system. Howard et al. [36] discuss the problems

encountered using WiFi communication in their multi-robot implementation; their

experience suggests the great benefit of keeping communications simple.

With the Hopscotch strategy, messages are only exchanged when an agent is

between contracts, and all that is required is transmission of a bid by a contracting

agent, a response to the bid from other agents, and a notification to other agents

from the contracting agent when the contract has been fulfilled. Furthermore, a

response to a bid is only required in the case of rejection, since the absence of a

rejection results in the contracting agent assuming responsibility for execution of the

contract. The message size required varies with specific implementation, but the

data content of each message is on the order of tens of bytes.

The Hopscotch strategy does not necessarily require global communication. Since

maintaining a list of searched lots is a collective responsibility, each agent maintains

a list of lots it knows to have been searched based on the agent’s own work and

responses to the agent’s bids. Because lot bidding priority is biased to give higher

priority to nearby lots, agents in a localized area are likely to have knowledge of

local lots, enabling them to respond to bids from nearby agents. This means that

the Hopscotch strategy can function when communication range is limited. Chapter

3 shows results that demonstrate good performance with limited communication

range.

2.3 Failure Rates

An agent’s chance of failure at each step in the simulation is based on the failure

rate. A typical expression of failure rate is Mean Time To Failure (MTTF), which is

25

www.manaraa.com

Chapter 2. Methods

expresses the mean useful life of a machine. This more accurately expresses failure

rates for machines that are out of reach and thus cannot be repaired, since the more

common term Mean Time Between Failures (MTBF) generally assumes the machine

will fail, be repaired, and returned to operation multiple times over its lifetime [49].

Failures can be inherent to the machine itself or due to external environmental fac-

tors. Both components are included in the overall failure rate.

The machine-inherent failure data is derived from both testing and analysis of the

components that make up the machine. The classical representation of failures over

time is a “bathtub” shaped curve, where there is a high chance of failure initially

due to “infant mortality”, dropping to a constant failure rate as components have

“burned in”, and then rising again as components reach the end of their design life

and wear out. A notional MTTF curve is shown in figure 2.4.

Fa

ilu
re

 R
at

e

Time

Environmental Effects

Burn-in WearoutStable Period

Figure 2.4: Typical failure rate over the life of a machine. The failure rate due to
environmental effects is added to the machine’s inherent failure rate [49].

When a machine is in an unknown environment, and especially when the machine

is mobile, the machine may encounter hazards that lead to failures. The overall fail-

ure rate is the sum of the failure rate of the machine itself and failure due to the

environment [50]. While there may be certain areas of the space that are more haz-

26

www.manaraa.com

Chapter 2. Methods

ardous than others, and certain times during the exploration when the risk of damage

is greater, one of the suppositions here is that the exact nature of the environment

is unknown and therefore can only be generally assumed, so a constant is a fair way

to represent this component of the overall failure rate.

For these experiments, it is stipulated that the exploration occurs over the flat,

constant region of the failure rate curve. When considering how robot agents would

be used, it is reasonable to expect that before being sent into an environment where

they cannot be reached, they would have gone through a burn-in period. Further-

more, it would be unlikely that machines that were approaching the end of their

expected life would be used for critical tasks. In addition, the exploration time con-

sidered will be small relative to the design life of the machines. For these reasons,

the agent failure rate is modeled here as a constant.

2.4 Metrics

In [21] Balch and Arkin introduce three metrics for multi-agent tasks, two of which

are adapted for use in this work. The first is time, a measure of how long it takes

to perform a task, with the goal of minimizing that time. Here, time refers to the

elapsed time to achieve some specified fraction of search completeness. The second is

energy, where the goal is to complete the task using the smallest amount of energy.

The energy metric is translated to the more informational metric of redundancy as

described below. The third they term reliability/survivability, the goal of which is

to measure the probability of task completion at the expense of any time or cost.

While reliability/survivability is not directly applicable here, robustness, which is

closely related, is evaluated using measurements of time and energy to compare

performance given a particular agent failure rate.

To formally define the time metric, let s(l, t) represent the number of times a

27

www.manaraa.com

Chapter 2. Methods

location l has been searched over all time steps 1 . . . t. Because the search goal is

not always complete coverage, the time metric is associated with a search coverage

fraction c. The time metric therefore refers to the time t at which the number of

locations in S where s(l, t) > 0 divided by the total number of locations in S reaches

c.

As previously described, operating agents are almost always searching and mov-

ing simultaneously. Therefore, a searching agent is considered to expend one unit

of energy per time step, so total energy is simply the number of searching agents

integrated over time. It is more insightful to consider energy spent at each location,

which indicates the amount of redundant search that has occurred. Since by defi-

nition a location only needs to be visited once to be considered searched, multiple

visits use excess energy and are considered redundant. The count of locations that

have been redundantly searched (i.e., locations where s(l, t) > 1, s(l, t) > 2, . . .) will

be used as a proxy for the energy metric.

Using these metrics, the effectiveness of the various search strategies will be

evaluated. As agents fail during the runs, these two metrics provide a measure

of how well each strategy copes with the failures. The importance of each respective

metric depends on the application, but in general the goal is to minimize time and

redundancy.

28

www.manaraa.com

Chapter 3

Results

3.1 Time and Redundancy

Figure 3.1 shows the time and redundancy performance of various strategies. The

data come from runs using a 200×200 search space with the nest in the center. Each

experimental run started with 20 agents, each agent having a 10−4 failure rate, run

over 104 time steps. Search data shown is averaged over 16 runs for each strategy.

The top black lines indicate the fraction of locations searched (given on the left y

axis) over time. The shaded regions below the black lines indicate the number of

times that fraction of locations was searched; from dark green to bright green, the

locations were searched one to 10+ times, respectively. The dark red line indicates

the number of active agents at a given time in the run, given on the right y axis.

The standard deviation from the average search progress over the 16 runs is shown

by the orange dashed lines.

As agents fail over the course of the run, the rate of progress is certainly affected.

However, the primary influence on the rate of progress for the non-coordinated al-

gorithms in (a), (b), and (e) seems to be space remaining. This is what would be

29

www.manaraa.com

Chapter 3. Results

(f) Hopscotch

0

0.2

0.4

0.6

0.8

1.0

A
c
t
iv

e

A

g
e
n
t
s

0

5

10

15

20

Time Steps

0 2000 4000 6000 8000 10000

(d) Greedy Lots

0

0.2

0.4

0.6

0.8

1.0

A
ctive A

gents

0

5

10

15

20

0 2000 4000 6000 8000 10000

(c) Greedy

Fr
ac

tio
n

of
 L

oc
at

io
ns

0

0.2

0.4

0.6

0.8

1.0

0

5

10

15

20

0 2000 4000 6000 8000 10000

(b) Random Chords

0

0.2

0.4

0.6

0.8

1.0

A
ctive A

gents

0

5

10

15

20

0 2000 4000 6000 8000 10000

(e) Lots With Individual Tracking

Fr
ac

tio
n

of
 L

oc
at

io
ns

0

0.2

0.4

0.6

0.8

1.0

0

5

10

15

20

Time Steps
0 2000 4000 6000 8000 10000

(a) Random 10% Chance Per Time Step
Fr

ac
tio

n
of

 L
oc

at
io

ns

0

0.2

0.4

0.6

0.8

1.0

0

5

10

15

20

0 2000 4000 6000 8000 10000

Figure 3.1: Space searched over time using different search strategies. The shaded
green regions indicate the number of times that fraction of locations was searched;
from dark green to bright green, the locations were searched one to 10+ times,
respectively. These colors match the key for figure 2.1. Dashed orange lines show
plus and minus one standard deviation, respectively. The dark red lines indicate the
number of active agents at a given time in the run, with values given on the right y
axis.

30

www.manaraa.com

Chapter 3. Results

intuitively expected, since for (a) and (b) there is nothing influencing the agents to

go to locations not previously searched, and for (e) the agents do not know which

locations have been searched by other agents.

The brighter green colored regions indicate redundancy, since search has been

defined as requiring only one visit to each location. As the number of locations

that have not been searched decreases, agents will search areas that have already

been searched, resulting in multiple searches at a larger number of locations. Search

efficiency is discussed further below.

The two random search strategies, shown in plots (a) and (b), yield similarly

shaped progress curves. As expected, the fraction of locations searched becomes

asymptotic to 1 as locations that have not been searched become scarce. Also,

the better performance of Random Chords strategy as compared to the Random

Direction Change strategy is apparent, with the probable reason being that turning

is much less frequent.

The Greedy strategy (c) starts out with excellent performance. Eventually,

though, some agents end up being “painted in” (having no neighboring locations

that have not been searched) before the search completes and revert to the less ef-

fective random search strategy in an attempt to find locations that have not been

searched. Still, for the cost of implementing the simple communication system re-

quired for this strategy, performance is achieved that is significantly better than any

of the non-coordinated strategies.

The 16 run average for Lots with Individual Tracking shown in plot (e) is smooth,

but plots of individual runs (not shown) indicate choppy progress, which is to be

expected when the search space is decomposed into lots that are not searched in a

coordinated manner. An agent searching a lot that has already been searched by

another agent spends that chunk of time contributing nothing; however, an agent

31

www.manaraa.com

Chapter 3. Results

searching a lot that has not been searched is extremely efficient while searching that

lot.

One remarkable feature of the Greedy Lots plot (d) is the wide spreading of

the second and third regions (indicating locations searched twice and three times,

respectively) below the darkest (searched once) region. The Greedy Lots strategy is

the only strategy of the six that considers the number of times searched in choosing

where to search; the other non-random strategies consider locations in a binary

manner as either searched or not searched. The characteristic of considering times

searched, and maintaining a smooth buildup of times searched across the space, lends

the strategy to use in a situation where agents have imperfect sensors or undetected

sensor failures. In this situation, the second search is more valuable than the third

search, and so on, with regard to overall detection [51].

The Hopscotch strategy (f) achieves excellent performance with very little re-

dundancy. What inefficiency there is is primarily due to the necessity of traversing

searched lots to get to a lot that has not been searched. If there are an average of

17 active agents over the first 2.5× 103 time steps, dividing 17 agents into 4.0× 104

locations gives a best case (given an ideal strategy and the expected agent failure

rate) search time of approximately 2.4× 103 time steps. The performance shown is

approximately 1.5 times this best case performance.

Also notable is the characteristic of the Hopscotch strategy that all agent activity

stops once the search completes. This is shown on graph (f) by all of the progress

lines going to a slope of zero when the search is complete. This behavior is not seen

with the other strategies, since Hopscotch is the only strategy where agents are aware

when the space has been completely searched.

Figure 3.2 provides further insight into how much redundant search is taking

place. These data are based on the same run parameters as previously described,

32

www.manaraa.com

Chapter 3. Results

averaged over 16 runs. This chart contrasts the non-decomposed strategies with the

lot-based strategies. The data for Random Direction Change, Random Chords, and

Greedy strategies show a fraction of locations searched over 32 times; this is primarily

due to effects at the boundary of the search space where an agent that is unable to

continue will turn and travel along the border locations. The lot-based strategies

do show some well-searched travel lanes to lot corners, which share common x or y

values, but generally avoid the border effects.

Searched

Searched ≥21

Searched ≥22

Searched ≥23

Searched ≥24

Searched ≥25

Random 10%

Per Time Step

Random

Chords

Greedy Greedy Lots Lots With

Ind. Tracking

Hopscotch

F
r
a
c
t
io

n

o
f
L
o
c
a
t
io

n
s

10−6

10−5

10−4

10−3

10−2

10−1

1

Figure 3.2: Comparison of the fraction of locations redundantly searched for various
search strategies.

3.2 Number of Agents

Figure 3.3 shows the effect of starting with different numbers of agents. The run

parameters are the same as for the previously shown data, except that the runs began

with 10, 20, 30, and 40 agents. As expected, using more agents generally results in

better performance. The performance gains, however, are less with each added agent,

especially with the uncoordinated strategies. The coordinated strategies, especially

the Hopscotch strategy, get the most performance from each added agent.

33

www.manaraa.com

Chapter 3. Results

(b) Random Chords

40 Agents
30 Agents
20 Agents
10 Agents

0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000 8000 10000

(a) Random 10% Chance Per Time Step

40 Agents
30 Agents
20 Agents
10 Agents

Fr
ac

tio
n

of
 L

oc
at

io
ns

0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000 8000 10000

(c) Greedy

40 Agents
30 Agents
20 Agents
10 Agents

Fr
ac

tio
n

of
 L

oc
at

io
ns

0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000 8000 10000

(e) Lots With Individual Tracking

40 Agents
30 Agents
20 Agents
10 Agents

Fr
ac

tio
n

of
 L

oc
at

io
ns

0

0.2

0.4

0.6

0.8

1.0

Time Steps
0 2000 4000 6000 8000 10000

(f) Hopscotch

40 Agents

30 Agents

20 Agents

10 Agents
0

0.2

0.4

0.6

0.8

1.0

Time Steps

0 2000 4000 6000 8000 10000

(d) Greedy Lots

40 Agents
30 Agents
20 Agents
10 Agents

0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000 8000 10000

Figure 3.3: Space searched over time with a varying number of agents at the start
of the runs. The dashed lines represent plus and minus one standard deviation,
respectively.

34

www.manaraa.com

Chapter 3. Results

3.3 Completeness

Figure 3.4 shows a comparison of the time to complete fractions of the search task.

Strategies other than Hopscotch do not always complete before all agents fail, so their

average never reaches 100%. Because of this, the figure uses 99.5% rather than 100%

as the last increment. If a complete search is required, Hopscotch and Lots With

Individual Tracking will meet the requirement as long as at least one agent remains

operational. However, Lots With Individual Tracking is so much slower that, for

these runs, all of the agents failed before Lots With Individual Tracking completed

the search. All of the strategies achieved 60% coverage by time step 4000, so if this

is sufficient performance, one of the uncoordinated strategies could be used, avoiding

the complication of implementing communications.

Time to 99.5%

Time to 90%

Time to 80%

Time to 70%

Time to 60%

All Agents Failed

Random 10% Chance Per Time Step

Random Chords

Greedy

Greedy Lots

Lots With Individual Tracking

Hopscotch

94.2% Complete

98.6% Complete

98.8% Complete

Time Steps

1000 2000 5000 10000 20000 50000

Figure 3.4: Comparison of the time to complete portions of the search task for
different strategies, with time to complete +1/−1 standard deviation from average
search progress. Where all agents failed before the search completed, average time of
the final failure is shown by the diamond marker with plus and minus one standard
deviation, along with the average completeness at that time.

35

www.manaraa.com

Chapter 3. Results

3.4 Hopscotch Lot Size and Failure Rate

When using the Hopscotch search strategy, the choice of lot size can have a significant

impact on performance. Larger lots can be searched more efficiently because on

average agents search more locations before they have to turn. However, larger lots

also take longer to search, meaning more work could be lost if an agent fails while

searching a large lot. Figure 3.5 shows this relationship for three different failure

rates. The data come from runs with a 480 × 480 search space with the nest in the

center. 64 agents started each search. Each data point is the average of four runs

with the indicated lot size and failure rate.

The plot shows that larger lots improve Hopscotch performance up to a point,

but larger lots can also have a detrimental effect on performance with high failure

rates. Comparison of 60% and 90% curves shows that the detrimental effect is more

pronounced when a higher percent of search coverage is desired, likely a result of

20×10-5, 90%
10×10-5, 90%
5.0×10-5, 90%
20×10-5, 60%
10×10-5, 60%
5.0×10-5, 60%

Failure Rate, Percent Searched

T
im

e
St

ep
s

0

5000

10000

15000

20000

Lot Side Length
10 20 30 40 50 60

Figure 3.5: Hopscotch search time as a function of lot size and agent failure rate.
Curves for time to 60% search completion and 90% completion are shown for each
of three different failure rates.

36

www.manaraa.com

Chapter 3. Results

more agents failing due to the longer search duration required.

3.5 Effect on Hopscotch of Limited Communica-

tion Range

Figure 3.6 shows a comparison of the time to complete fractions of the search task

using a Hopscotch strategy with limited communication range. In order to minimize

the effects of space borders on agent concentration, a much larger search space was

used. The search space for these runs was 480× 480 with the nest in the center. 20

agents started each search, with a 2 × 10−5 failure rate for each agent. Each data

point is the average of four runs with the indicated communication and lot size.

The most obvious result from these plots is that increasing communication range

has a positive effect on performance. An interesting result shown in these plots is

that, except for the small 10×10 lots, there is a great improvement in performance up

to a communication range of roughly three times the lot edge length. This indicates

that there is definite benefit to considering communication range when specifying lot

size, and vice versa.

37

www.manaraa.com

Chapter 3. Results

(d) Lot Size 40 × 40

90%
80%
70%
60%

Percent
Complete

Communication Range / 40

0

20

40

60

80

0 1 2 3 4 5

(c) Lot Size 30 × 30

90%
80%
70%
60%

Percent
Complete

Communication Range / 30

T
im

e
St

ep
s

×
 1

00
0

0

20

40

60

80

0 1 2 3 4 5

(a) Lot Size 10 × 10

90%
80%
70%
60%

Percent
Complete

Communication Range / 10

T
im

e
St

ep
s

×
 1

00
0

0

20

40

60

80

0 1 2 3 4 5

(b) Lot Size 20 × 20

90%
80%
70%
60%

Percent
Complete

Communication Range / 20

0

20

40

60

80

0 1 2 3 4 5

Figure 3.6: Comparison of the effect of communication range on performance with
various Hopscotch lot sizes. The x-axis for each graph is in units of communication
range divided by the length of a lot side.

38

www.manaraa.com

Chapter 4

Conclusions

4.1 Summary

The work described in this thesis compared various basic multi-agent search strategies

featuring different types of approaches and requirements. Hopscotch, a coordinated

strategy designed for robust handling of agent failures, was introduced and charac-

terized. All of the strategies were challenged with agent failures during testing. Of

the strategies considered, the Hopscotch strategy had the best performance based on

both of the metrics considered here, time and redundancy, but requires implementa-

tion of a reliable two-way communication network to function properly. The Greedy

and Greedy Lots strategies also achieved impressive time performance but had more

redundancy, especially as the search got close to being complete and locations that

had not been searched were difficult to greedily find. While the greedy strategies also

require communication between agents, this communication can be implemented us-

ing a simple pheromone-like marking scheme. The uncoordinated strategies have

fairly good time performance when only fractional search coverage is required. Since

the agents required to implement the random strategy are not very complicated, it

39

www.manaraa.com

Chapter 4. Conclusions

may be most economical to improve time performance of random strategies simply

by increasing the number of agents used.

The six strategies considered implement different ways of dealing with failures,

with mixed results. The uncoordinated strategies (Random Direction Change, Ran-

dom Chords, and Lots With Individual Tracking) have an inherent duplication of

effort that tends to hide agent failures. This duplication of effort explains their

very poor performance as measured by both the time and redundancy metrics. The

greedy strategies’ marking system handles agent failures implicitly, without requir-

ing extra consideration. Because of this, the greedy strategies seem be least affected

by failure. In contrast, Hopscotch is fully coordinated and therefore very powerful

and adaptable, but needs explicit failure handling for best performance. Hopscotch

and Greedy performance are very close through the first 80% of the search, showing

that the explicit failure handling of the Hopscotch strategy performs on par with the

implicit failure handling of the Greedy strategy.

The Hopscotch strategy does well because it is a coordinated strategy with fea-

tures designed to handle agent failures. Because it is coordinated, work is explicitly

divided between agents. This reduces duplicate work, resulting in the minimiza-

tion of both time and redundancy as shown in the simulation data. The Hopscotch

contract net implementation features real-time subtask assignment and decentral-

ized subtask management. Simulation results indicate that these features allow the

Hopscotch strategy to continue to work well even after agents fail.

4.2 Future Work

A real-world application may need to deal with unknown, arbitrary spaces and ob-

stacles. The Hopscotch algorithm could potentially be expanded to handle these

scenarios. This type of implementation could also handle variances in the search

40

www.manaraa.com

Chapter 4. Conclusions

space such as varying level of hazard, varying search value, or hampered mobility

by assigning these attributes to lots when they are discovered and considering them

when prioritizing lots and evaluating bids. Obstacles and borders could be detected

and tracked along with contracted and completed lots, allowing agents to create a

map of the space that could be used during the bidding process.

Some applications may require handling other types of real-world problems such

as location error and sensor error. Location error can be modeled and compensated

for by, for example, adjusting lot size so that lots overlap. If the search sensor is

less than perfect, lots could be assigned a “search quality” value rather than the

current binary status of searched or not searched, with this search quality used in

lot prioritization.

To explore the potential of the Hopscotch strategy, a simulation was run using

a pseudo-infinite search space; that is, the space was large enough that the borders

were never encountered and thus did not affect agent behavior. To maintain real-

ism, the communication range-limited version of Hopscotch was used with a modest

communication range of 60. The ruleset was not modified in any way for this demon-

stration, and only 20 agents were used with no failures. The search progress as the

run progressed is shown in figure 4.1. Because of the nest proximity bias compo-

nent of lot prioritization, the Hopscotch strategy maintained a contiguous region of

searched area centered at the nest. It would be interesting to investigate applications

of Hopscotch for searching large or unbounded environments, and how it could be

tuned to perform well in these applications.

There are other interesting opportunities to extend the capabilities of the Hop-

scotch algorithm. The Hopscotch contract net could be used for any complicated

space that can be decomposed into lots. It is not necessary that the graph of the

lots be fully connected as long as all vertices (lots) are reachable. Spaces with this

type of structure includes hotels with rooms connecting to a common corridor, or

41

www.manaraa.com

Chapter 4. Conclusions

(a) 1 × 104 Time Steps (b) 2 × 104 Time Steps

(c) 3 × 104 Time Steps (d) 4 × 104 Time Steps

Figure 4.1: Progress of Hopscotch search of a very large space. A color key is given
in figure 2.1.

42

www.manaraa.com

Chapter 4. Conclusions

an office where the space is weakly divided into cubicles. For these cases, though,

pure travel time could become a significant factor, so there may be opportunities to

improve the algorithm using some of the graph-based optimization techniques [29]

or roadmap techniques [52, 30] discussed in the literature.

In non-uniform search spaces, or in situations where there are specific search

targets that have a non-uniform distribution, the decomposition of the search space

into lots provides advantages that the Hopscotch strategy can take advantage of. For

example, a lot with multiple expired contracts could be flagged as hazardous, with

appropriate measures taken to protect agents. When there are specific search targets

that are likely to be clustered, for example fossils or a species of plant, search results

for one lot could be used to bias the priority of nearby lots.

One interesting result of these experiments was the excellent time performance of

the greedy strategies. There may be ways of incorporating greedy elements into the

Hopscotch strategy to improve performance further. The marking techniques used

for the greedy strategies could also provide an effective fallback capability in cases

where two-way communication is unavailable.

Finally, although agent failure is considered here to be a binary state, there are

various types of failures (e.g., sensor, navigation, communication) that may leave

agents partially operational, or even malevolent. It may be possible to identify these

types of failures based on agent behavior and adjust the search rules to compensate

for them.

43

www.manaraa.com

References

[1] Pedro Santana, Jose Barata, Hildebrando Cruz, Antonio Mestre, Joao Lisboa,
and Lúıs Flores. A multi-robot system for landmine detection. Emerging Tech-
nologies and Factory Automation, 2005. ETFA 2005. 10th IEEE Conference on.
Vol. 1. IEEE, 2005.

[2] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. A real-time algorithm for
mobile robot mapping with applications to multi-robot and 3D mapping. Robotics
and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference
on. Vol. 1. IEEE, 2000.

[3] Terry Huntsberger, Paolo Pirjanian, Ashitey Trebi-Ollennu, Hari Das Nayar,
Hrand Aghazarian, Anthony J. Ganino, Mike Garrett, Sanjay S. Joshi, and Paul
S. Schenker. CAMPOUT: A control architecture for tightly coupled coordina-
tion of multirobot systems for planetary surface exploration. Systems, Man and
Cybernetics, Part A: Systems and Humans, IEEE Transactions on 33.5 (2003):
550-559.

[4] Yaniv Altshuler, Vladimir Yanovsky, Israel A. Wagner, and Alfred M. Bruckstein.
Swarm intelligence– searchers, cleaners and hunters. Swarm Intelligent Systems
(2006): 93-132.

[5] R. Beckers, S. Goss, Jean-Louis Deneubourg, and J. M. Pasteels. Colony size,
communication, and ant foraging strategy. Psyche 96.3-4 (1989): 239-256.

[6] Donald E. Franklin, Andrew B. Kahng, and M. Anthony Lewis. Distributed sens-
ing and probing with multiple search agents: toward system-level landmine de-
tection solutions. SPIE’s 1995 Symposium on OE/Aerospace Sensing and Dual
Use Photonics. International Society for Optics and Photonics, 1995.

[7] David Jung, Gordon Cheng, and Alexander Zelinsky. Robot cleaning: An appli-
cation of distributed planning and real-time vision. International conference on
Field and Service Robotics. 1997.

44

www.manaraa.com

References

[8] Chaomin Luo and Simon X. Yang. A real-time cooperative sweeping strategy for
multiple cleaning robots. Intelligent Control, 2002. Proceedings of the 2002 IEEE
International Symposium on. IEEE, 2002.

[9] Howie Choset. Coverage for robotics – A survey of recent results. Annals of
Mathematics and Artificial Intelligence 31.1 (2001): 113-126.

[10] Stephen B. Stancliff, John Dolan, and Ashitey Trebi-Ollennu. Planning to fail–
Reliability needs to be considered a priori in multirobot task allocation. Sys-
tems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference
on. IEEE, 2009.

[11] Gregory Dudek, Michael RM Jenkin, Evangelos Milios, and David Wilkes. A
taxonomy for multi-agent robotics. Autonomous Robots 3.4 (1996): 375-397.

[12] Marco Dorigo, Marco, Luca Maria Gambardella, Mauro Birattari, Alcherio Mar-
tinoli, Riccardo Poli, and Thomas Stützle, eds. Ant Colony Optimization and
Swarm Intelligence: 5th International Workshop, ANTS 2006, Brussels, Bel-
gium, September 4-7, 2006, Proceedings. Vol. 4150. Springer, 2006.

[13] T. Flanagan, K. Letendre, and M. E. Moses. Quantifying the Effect of Colony
Size and Food Distribution on Harvester Ant Foraging. PloS one 7.7 (2012):
e39427.

[14] S. Verret. Current state of the art in multirobot systems. Defence Research and
Development Canada-Suffield, Ralston ALTA, Technical Memorandum DRDC-
SUFFIELD-TM-2005-241 (2005).

[15] Y. Uny Cao, Alex S. Fukunaga, and Andrew Kahng. Cooperative mobile
robotics: Antecedents and directions. Autonomous robots 4.1 (1997): 7-27.

[16] Curt Berenton and Pradeep Khosla. An analysis of cooperative repair capabili-
ties in a team of robots. Robotics and Automation, 2002. Proceedings. ICRA’02.
IEEE International Conference on. Vol. 1. IEEE, 2002.

[17] Wooram Park, David Albright, Charles Eddleston, Wai K. Won, Kiju Lee, G.S.
Chirikjian. Robotic Self-Repair in a Semi-Structured Environment. Workshop
Proceedings of Self-Sustaining Robotic Systems. 2004.

[18] Fredric Chenavier and James L. Crowley. Position estimation for a mobile robot
using vision and odometry. Robotics and Automation, 1992. Proceedings., 1992
IEEE International Conference on. IEEE, 1992.

45

www.manaraa.com

References

[19] X. P. Yang and S. Y. Liu. Mobile robot locating and tracking system de-
sign based on wireless sensor network. Chinese Journal of Electron Devices 30.6
(2007): 2265-2268.

[20] Ercan U. Acar, Howie Choset, Yangang Zhang and Mark Schervish. Path Plan-
ning for Robotic Demining: Robust Sensor-Based Coverage of Unstructured En-
vironments and Probabilistic Methods. The International Journal of Robotics
Research 22.7-8 (2003): 441-466.

[21] Tucker Balch and Ronald C. Arkin. Communication in Reactive Multiagent
Robotic Systems. Autonomous Robots 1.1 (1994): 27-52.

[22] Douglas W. Gage. Randomized search strategies with imperfect sensors. Pro-
ceedings of SPIE. Vol. 2058. 1994.

[23] Sven Koenig, Boleslaw Szymanski, and Yaxin Liu. Efficient and inefficient ant
coverage methods. Annals of Mathematics and Artificial Intelligence 31.1 (2001):
41-76.

[24] Sven Koenig and Yaxin Liu. Terrain coverage with ant robots: a simulation
study. Proceedings of the fifth international conference on Autonomous agents.
ACM, 2001.

[25] I. Wagner and A. Bruckstein. Cooperative cleaners: a study in ant robotics.
Technical Report CIS9512, Technion, 1995.

[26] Eliyahu Osherovich, Vladimir Yanovki, Israel A. Wagner and Alfred M. Bruck-
stein. Robust and Efficient Covering of Unknown Continuous Domains with Sim-
ple, Ant-Like A(ge)nts. The International Journal of Robotics Research 27.7
(2008): 815-831.

[27] Bijan Ranjbar-Sahraei, Gerhard Weiss, and Ali Nakisaee. Stigmergic coverage
algorithm for multi-robot systems. Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems-Volume 3. International
Foundation for Autonomous Agents and Multiagent Systems, 2012.

[28] Ani M. Hsieh, Ádám Halász, Spring Berman, and Vikay Kumar. Biologically
inspired redistribution of a swarm of robots among multiple sites. Swarm Intel-
ligence 2.2 (2008): 121-141.

[29] Noam Hazon and Gal A. Kaminka. On redundancy, efficiency, and robustness
in coverage for multiple robots. Robotics and Autonomous Systems 56.12 (2008):
1102-1114.

46

www.manaraa.com

References

[30] O. Bayazit, Jyh-Ming Lien, and Nancy Amato. Better group behaviors using
rule-based roadmaps. Algorithmic Foundations of Robotics V (2004): 95-112.

[31] Wolfram Burgard, Mark Moors, and Frank Schneider. Collaborative Exploration
of Unknown Environments with Teams of Mobile Robots. Advances in plan-based
control of robotic agents (2002): 187-215.

[32] Rajeev Alur, Aveek J. Das, Joel Esposito, Rafael Fierro, Gregory Grudic,
Yerang Hur, R. Vijay Kumar, Insup Lee, James Ostrowski, George J. Pappas, B.
Southall, John R. Spletzer, and Camillo J. Taylor. A framework and architecture
for multirobot coordination. Experimental Robotics VII (2001): 303-312.

[33] Nicola Bezzo and Rafael Fierro. Swarming of mobile router networks. American
Control Conference (ACC), 2011. IEEE, 2011.

[34] Jorge Cortés, Sonia Mart́ınez, Timur Karatas, and Francesco Bullo. Coverage
control for mobile sensing networks. Robotics and Automation, IEEE Transac-
tions on 20.2 (2004): 243-255.

[35] Francesco Bullo, Ruggero Carli, and Paolo Frasca. Gossip coverage control for
robotic networks: dynamical systems on the space of partitions. SIAM Journal
on Control and Optimization 50.1 (2012): 419-447

[36] Andrew Howard, Lynne E. Parker, and Gaurav S. Sukhatme. Experiments with
a large heterogeneous mobile robot team: Exploration, mapping, deployment and
detection. The International Journal of Robotics Research 25.5-6 (2006): 431-447.

[37] Spring Berman, Adam Halasz, M. Ani Hsieh, and Vijay Kumar. Optimized
stochastic policies for task allocation in swarms of robots. Robotics, IEEE Trans-
actions on 25.4 (2009): 927-937.

[38] Reid G. Smith, The contract net protocol: High-level communication and con-
trol in a distributed problem solver. Computers, IEEE Transactions on 100.12
(1980): 1104-1113.

[39] Han-Lim Choi, Luc Brunet, and Jonathan P. How. Consensus-Based Decentral-
ized Auctions for Robust Task Allocation. Robotics, IEEE Transactions on 25.4
(2009): 912-926.

[40] Sanem Sariel and Tucker Balch. Real Time Auction Based Allocation of Tasks
for Multi-Robot Exploration Problem in Dynamic Environments. Proceedings of
the AAAI-05 Workshop on Integrating Planning into Scheduling. 2005.

47

www.manaraa.com

References

[41] S. B. Stancliff, John M. Dolan, and A. Trebi-Ollennu. Mission reliability estima-
tion for multirobot team design. Intelligent Robots and Systems, 2006 IEEE/RSJ
International Conference on. IEEE, 2006.

[42] Michael Rubenstein, Christian Ahler, and Radhika Nagpal. Kilobot: A Low
Cost Scalable Robot System for Collective Behaviors. Robotics and Automation
(ICRA), 2012 IEEE International Conference on. IEEE, 2012.

[43] The Objective-C 2.0 Programming Language. Apple Inc. 2009.

[44] Weisstein, Eric W. von Neumann Neighborhood. From MathWorld–A Wolfram
Web Resource. http://mathworld.wolfram.com/vonNeumannNeighborhood.html
retrieved 10/17/2012.

[45] David Payton, Mike Daily, Regina Estowski, Mike Howard, and Craig Lee.
Pheromone robotics. Autonomous Robots 11.3 (2001): 319-324.

[46] Michael J. McNish. Effects of uniform target density on random search. Master’s
Thesis, Naval Postgraduate School, Monterey, CA, September 1987.

[47] M. Bernardine Dias, Robert Zlot, Nidhi Kalra, and Anthony Stentz. Market-
Based Multirobot Coordination: A Survey and Analysis. Proceedings of the IEEE
94.7 (2006): 1257-1270.

[48] Brian P. Gerkey and Maja J. Matarić. Sold!: Auction methods for multirobot
coordination. Robotics and Automation, IEEE Transactions on 18.5 (2002): 758-
768.

[49] Paul A. Tobias, David C. Trindade. Applied Reliability. Chapman & Hall/CRC,
2010.

[50] Stephen Stancliff, John M. Dolan, and Ashitey Trebi-Ollennu. Towards a Pre-
dictive Model of Robot Reliability. Robotics Institute Paper 197 (2005).

[51] Douglas W. Gage. Many-robot MCM search systems. Proceedings of the Au-
tonomous Vehicles in Mine Countermeasures Symposium. Vol. 9. 1995.

[52] Nancy M. Amato and Yan Wu. A randomized roadmap method for path and
manipulation planning. Robotics and Automation, 1996. Proceedings., 1996 IEEE
International Conference on. Vol. 1. IEEE, 1996.

48

